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Uncertain ‘Areal limits’ are problematic in many geo-engineering applications.  Geostatistical techniques 
algorithms have been developed to solve various spatial modeling problems.  These techniques deal with 
variations of discrete and continuous variables ‘within’ the domain of interest.  They are not particularly 
efficient when it comes to quantifying uncertain areal limits.  In this paper, a Distance Function (DF) 
based algorithm is introduced to provide a framework for delineation of uncertainty for 2-dimensional 
areal limits.  The distance function approach considers measurements of the presence or absence of a 
particular attribute across the domain.  In the proposed methodology, a large number of synthetic limits 
are generated and then used to calibrate a ‘band of uncertainty’ for areal limits.  A cross-validation 
exercise is then implemented to assess the performance of the methodology.  The ‘band of uncertainty’ 
resulted from this procedure can be used to draw equi-probable realizations of areal extents.  These 
realizations can be easily used in a Monte Carlo Simulation framework to bound realizations of properties 
within the site. 

Introduction 

In environmental applications, a threshold is often defined to create a sharp boundary between 
contaminated and uncontaminated locations.  Under steady-state condition and for a pre-specified 
threshold, there are some areas that are clearly contaminated and some areas are clearly clean.  In other 
words: a sharp boundary exists between contaminated and uncontaminated areas.   

Geostatistical approaches (Deutsch and Journel 1998) and Machine-Learning algorithms (Kanevsky et al. 
1996) have been developed and frequently used to solve various stationary and non-stationary problems. 
Non-stationarity in data is usually handled by decomposing the data into a trend and a residual:  

 ( ) ( ) ( )uRumuZ +=  (1) 

The trend component is often modeled deterministically. Fitting polynomials, inverse distance (ID) 
interpolation, block kriging (Deutsch 2002) and Neural Networks (Kanevsky et al. 2004) are some of trend 
modeling approaches used in practice. The residual component is modeled by geostatistical techniques. The 
above approaches have shown lots of promise in modeling earth science attributes at unsampled locations. 
However, they do not provide a reasonable measure of uncertainty particularly at the edges, when a sharp 
boundary is expected.  

In order to deal with this problem, Froidevaux et al. (2001) used an analytical model of transport to 
generate a series of contaminant concentration maps, each map resulted from a different yet equiprobable 
set of parameters. This suit of concentration images is then summarized into an a-priori contamination 
probability map, describing the probability that, at any location, the contamination concentration exceeds a 
critical threshold. This prior probability is then conditioned to available hard data (piezometer readings), 
using indicator simulation with locally varying means. One drawback of this methodology is that it can not 
be used in complex situations such as characterization of sites impacted with residual NAPL. This is due to 
the fact that the distribution of residual NAPL in soil can not be explained by any analytical or numerical 
model, as it is a complex function of the soil texture and groundwater fluctuations. There is another 
drawback for this methodology: too much weight is assigned to the a-priori map obtained by Monte Carlo 
Simulations, which has been considered as a locally varying mean for the subsequent indicator kriging.   

Gleyze et al. (2001) also proposed an extension to Wombling procedure (Womble 1951) to characterize the 
regions of abrupt change of a spatial variable Z for which a finite number of data are available on a given 
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geographical area. Although this method has shown some promise (especially in biological sciences 
community), it requires a statistical test and assumptions about significance of the detected barriers that 
make it ‘modeler-dependent’ for a large part.  

The distance function based approach proposed in this paper is an attempt to overcome the above 
drawbacks and develop a simple and robust methodology for characterization of areal extents in a 
probabilistic framework.  

The space of uncertainty for areal limits can be represented by an ‘uncertainty band’, as shown in figure (1 
– a, b). For every data location, Distance Function (DF) parameter is defined as the distance to the nearest 
‘unlike’ data location. It is positive, when a data location meets a pre-specified condition (e.g. contaminant 
is present) and negative otherwise. The centerline and bandwidth of the uncertainty band should be 
determined by modifying the Distance Function parameters. The DF parameters should be systematically 
modified until the centerline and width of the uncertainty band are calibrated against a large number of 
synthetic plumes.  

The Distance-Function based algorithm is very simple in concept and consists of a few steps. Its 
implementation details come in the next paragraphs. It can be used to characterize the uncertainty in the 
areal limits of any earth-science attribute. The characterized space of uncertainty for areal limits can be 
easily used in a Monte Carlo Simulation framework to clip realizations previously obtained by 
geostatistical analysis (Hosseini et al. 2006). In order to evaluate the methodology, a cross-validation 
exercise is also implemented.  

Step 1: Assigning the control points and calculating the DF values 

First, a number of user-defined control points are assigned at locations that are certainly uncontaminated. 
Figure 2 – a shows the configuration of contaminated/uncontaminated wells and figure 2 – b shows the 
locations of control points and the distance function values calculated for all data locations and control 
points.  

Step 2: Mapping the distance function values 

Inverse distance interpolation can be used to map DF values across the domain. An inverse distance (ID) 
interpolation is a spatially weighted average of the sample values within a search radius. It is calculated as:  
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in which, u is the unsampled location, )(* uZ is the ID interpolation estimate at the unsampled location, 

iλ ’s are weights assigned to each conditioning data at sample points, and N is the number of data locations 
in the search neighborhood. The weights can be calculated by: 
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in which, id ’s are Euclidian distances between estimation location and sample points. Exponent ω  is the 
distance exponent value and can take any value from 0.5 to 2.ω  is traditionally calibrated by cross 
validation. Recently, Muller et al. (2005) showed that cross-validation may not give the most appropriate 
value for the distance exponent value, as the distances between the prediction points are usually much 
larger than those of sampling locations. They suggest that a more reliable approach would be to use a 
distance exponent value between 1.5 and 2.0. Nevertheless, ID interpolation should still be optimized by 
limiting the number of data (the search neighborhood) used in the interpolation (Rojas-Avellaneda and 
Silvan-Cardenas 2006). As a result, the ID interpolation weights can be calculated by:        
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where, r is the radius of the search neighborhood, which should be calibrated by cross validation. 

Figure 3 shows the contour line of DF = 0 determined by ID interpolation of DF’s with a distance exponent 
valueω of 1.5 and a calibrated search radius. This contour line represents an initial guess for the plume 
boundary. 

Step 3: Generating multiple synthetic plumes 

Multiple synthetic plumes may be generated by locating random wells across the modeling domain. First, a 
search angle α is specified by the modeler. Then, for every contaminated well a search is implemented and 
all the search directions that include a closest ‘unlike’ data location are identified as ‘valid’ search 
directions and those include a closest ‘like’ data location are identified as ‘null’ search directions. In order 
to generate a synthetic plume, a search direction is randomly selected for each contaminated well. The 
selected search direction can be either a ‘null’ or a ‘valid’ search direction. If a ‘valid’ search direction is 
selected, a new ‘imaginary’ well is added to the domain. This ‘imaginary’ well is randomly located on a 
line that connects the original contaminated well location to the closest ‘unlike’ well location. The new 
imaginary well is randomly assigned to be either contaminated or uncontaminated. Repeating this process 
generates multiple synthetic plumes that can be used in calibration of uncertainty band. Figure 4 
schematically shows the process. The search angle α is very important in this process. In fact as 
α decreases, more short scale variations appear in the generated synthetic plumes. Figure 5 shows a number 
of synthetic plumes with a search angle α of 30°.    

Step 4: Calibrating the band of uncertainty  

The centerline and width of uncertainty band are calibrated by (1) systematically modifying the DF values 
for all data locations and control points, (2) mapping the new set of DF values across the domain and (3) 
minimizing an objective function to find the best set of DF values. Modifying the DF values has been made 
possible by introducing parameters C1 and C2. For every attempt, original DF values are modified by 
adding or subtracting a new C2 value and multiplying to or dividing by a new C1 value:  
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Then, the new set of DF values is mapped across the domain by ID interpolation and a new uncertainty 
band is obtained. Changing C1 and C2 values will result in changing in the location of the centerline and 
width of uncertainty band. Figure 6 shows the uncertainty band for different C1 and C2 values. To calibrate 
DF values at different data locations, one needs to find C1 and C2 values to minimize the objective function: 
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in which, True
jP  are the probabilities corresponding to quantiles q1  to qM  that are used in calibration, 

Calc
jiP , is calculated as the proportion of synthetic plumes that 99 % of their area is covered by the quantile 

map corresponding to a given uncertainty band and a given quantile from the set of q1  to qM.. The 
uncertainty band is calculated each time with a different set of C1 and C2 values. α1 to αM are the search 
angles that have been used to generate the synthetic plumes. A reasonable number of quantiles and a 
reasonable number of search angles must be used in calibration. The quantiles q10, q30, q50, q70, and q90  and 
the search angles of  5°, 10°, 30°, 45°, 60°, and 90° have been used in this study. 

Figure 7 represents the OF for different C1 and C2 values; and depicts the C1 and C2 values that minimize 
the objective function are: C1 = 1.36 and C2 = 12.92. The optimized uncertainty band and the corresponding 
p10 to q90 maps for the calibrated C1 and C2 values are shown in figure 8.    

Performance assessment through cross-validation  

In order to assess the performance of the proposed methodology, a cross-validation exercise is 
implemented. Some of contaminated and uncontaminated wells were removed from the system one by one 
(with replacement), and the probability of being contaminated was calculated for each well based on the 
proposed methodology. Results are shown in table 1.  

Table 1: Cross-validation results for 11 wells deemed closely located on the boundaries of the plume  

Well ID C1 C2 Target Probability Calc. Probability 
1 1.327 14.11 1 1 
2 1.331 12.94 1 1 
4 1.31 13.8 1 0.8339 
7 1.28 18.3 1 0 
8 1.375 14.1 1 0.2216 
9 1.345 13.82 1 1 

13 2.257 41.31 0 0.01291 
14 2.481 43.43 0 1 
15 2.491 38.91 0 0 
16 2.356 46.88 0 0 
18 2.321 45.55 0 0.8852 

As it can be observed in table 1, cross-validation shows that the proposed methodology can reasonably 
detect the areas with potential contamination and exclude the areas that are potentially clean. The 
methodology, however, fails to detect the contaminated areas when some discrepancies are present, 
meaning one or more contaminated wells exist far away from the main body of the plume. This is the case 
for well 7, in the above example.   

Conclusions 

Delineation of uncertainty in areal limits is very important and challenging in many science and 
engineering applications.  Defining the ‘Distance Function’ concept, a simple and powerful methodology 
was proposed to characterize the space of uncertainty for areal limits.  The methodology was tested by 
cross-validation and deemed to be robust, unless some discrepancies exist such as a contaminated well far 
away from the main body of the plume.  The model of uncertainty obtained by this methodology can be 
easily incorporated in Monte Carlo Simulation to simulate any continuous attribute with uncertain areal 
limits. 
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(a)   
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Figure 1: (a) A schematic uncertainty band and the corresponding uncertainty band width and centerline;  
(b) Cumulative probability distribution along A-A’ cross-section  
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Figure 2: (a) Configuration of contaminated (solid circles) and uncontaminated wells; (b) Designation of 
control points and calculation of DF values at all data locations and control points. 
 
 
 

 
Figure 3: Contour line of DF = 0 (an initial guess for the plume boundary) obtained by ID interpolation 
with a distance exponent valueω of 1.5 and an optimized search radius.  

(b) (a) 
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Figure 4: Procedure of generating multiple synthetic plumes to be used in calibration of uncertainty band. 
 
 
 

 
 
 
Figure 5: Synthetic plumes generated using the explained procedure with a search angle of α = 30°.  
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Figure 6: Different uncertainty bands as a function of C1 and C2 values.  
 

C1 = 0.8 

C2 = 10 

C1 = 1.5 C1 = 1.0

C2 = 80 

C2 = 40 

C2 = 20 



 127-10 

 
Figure 7: Objective Function as a function of C1 and C2 values. The C1 and C2 values that minimize the 
objective function are also shown.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
Figure 8: The optimized uncertainty band (a) and corresponding p10, p30, p50, p70, and p90 maps (b-f) based 
on the calibrated C1 and C2 values: 1.36 and 12.92, respectively.   
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